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Metallacyclopentane to Metallacyclobutane 
Ring Contraction 

Sir: 

We recently reported that (i?5-C5H5)Cl2TaCH2CH-
MeCHMeCH2 is the crucial intermediate in the catalytic di-
merization of propylene to largely 2,3-dimethyl-l-butene 
(93%).' Unfortunately, this catalyst system becomes inactive 
after ~20 turnovers, possible because Ta(T75-CsHs)Cl2(pro-
pylene), which almost certainly must be formed at some point, 
is apparently unstable at 25 0 C. 2 In contrast, we find that the 
corresponding ^ -CsMe 5 catalyst system is indefinitely active 
for dimerizing monosubstituted a olefins3 (in the absence of 
air and water), probably because the Ta(^-CsMe 5 ) -
C l 2 ( R C H = C H 2 ) complexes are comparatively stable and 
isolable.2 This communication is concerned with the mecha­
nism of this olefin dimerization reaction. 

Table I shows the results of four dimerization reactions.4,5 

Two types of products are formed. The "tail-to-tail" (tt) dimer 
(4, eq 1, M = (r/5-CsMe5)Cl2Ta) must come from the trans-
^3,/3'-substituted metallacycle (2),2 while the "head-to-tail" 
(ht) dimer (5) most likely comes from an a,^'-substituted 
metallacycle (3) (stereochemistry unknown). So far, we have 

x: -R 
-HRCH=CH. 

M 
CH, 

R -KCH=CH2 
CHR 

+RCH=CH, 
K, 

-RCH=CH, 
(V 

observed only 2 spectroscopically (under conditions where 
dimerization is negligible), even in the last case where only 5 
is formed.8 The drastic change in the ratio of 4 to 5 can be as­
cribed to marked changes in k\ and ki (and/or K\ and Ki) 
under catalytic conditions as R becomes larger (see later).6 

We chose to study the mechanism of catalytic dimerization 
using 1 -pentene-2-</ (>99% d\). The tt dimer was formed more 
slowly than that made with unlabeled 1-pentene ( & H / ^ D = 3.3 

D 

6 

DH,C 

T ^ M . 
HDC 

(3) 
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Table I. Four Catalytic Dimerizations at 50 0C in Toluene0 

olefin 

CH2=CHMe 
CH2=CHCH2-

CH2Me 
CH2=CHCH2-

CHMe2 

CH2=CHCH2-
CMe3 

R R 

98c 

88rf 

61* 

0 

R 

"\—R (%) 

V 
\ld 

39f 

100e 

ôbsd (min ') 
X 102* 

9.4 ±0.9 
8.3 ±0.8 

4.9 ±0.5 

2.6 ± 0.3 

" See note 5. b See note 6. c Identified by GLC coinjection with 
authentic samples on two different columns. d Identified by GLC, ' H 
NMR, and 13C NMR comparison with authentic samples.e Identified 
by MS, 1H NMR, and high-field 1H gated decoupled 13C NMR.7 

± 0.6) and was shown to be >90% 7 by 13C NMR (eq 2).9 This 
result is consistent with formation of a butenyl hydride inter­
mediate (6) followed by reductive elimination of the observed 
product. It is totally inconsistent with an a-hydrogen process 
such as that shown in eq 3.10 The labeling in the minor isomer 
(12) is not that expected (9) by reductive elimination from one 
of the two possible intermediate butenyl hydrides (8, eq 4). 

Also, the isotope effect is unexpectedly small ( & H / ^ D = 1-2 
± 0.2). The most plausible explanation is that 10 forms and 
collapses to 1 1 . " 11 is the type of metallacyclobutane complex 
which we have invoked to explain how (e.g.) propylene reacts 
with Ta(^-C 5H 5 ) (CHCMe 3 )Cl 2 ; 1 2 it is known (in this case) 
to rearrange exclusively to give the type of product shown. 
Unfortunately, we cannot tell if 6 also contracts to an MC3 
(metallacyclobutane) complex since the position of the deu­
terium atoms in the product would be the same. We might 
suspect that it does since only by invoking an intermediate 
a,a,/3-trimethyltantallacyclobutane complex could we explain 
the small amount (2% of the mixture) of tetramethylethylene 
formed when propylene was dimerized using the ?75-C5H5 

catalyst system.1 

An experiment was designed to test this hypothesis. Codi-

R 

C J T ^ 
T^ 

13a, R = H 
b, R = D 

,, r 
R H , C ^ ^ 

14a, R = H 
b , R = D 

+ 

15a, R = H 
t >, R = D 

K (5) 
DH,C 

D 

1 4 c , R •• D 
15c, R 

merization of propylene and 1-pentene yields (in addition to 
propylene and 1-pentene dimers) four codimers, two of which 
(14a and 15a, eq 5) come from 13a and therefore predominate 
(88% of codimer mix13a). Codimerization of propylene and 
1 -pentene-2-d gave 14b and 15b, the products expected from 
the MC4 to MC3 ring contraction postulated above, not 14c 
and 15c, the products expected from the reductive elimination 
pathway.9 ' l3b (As expected, & H M D for forming 14b is ~3.5 , 
while that for forming 15b is ~1.2.) Therefore we conclude that 
the /3,jg'-substituted metallacyclopentane complexes, 
(^-C 5 Me 5 )Cl 2 TaCH 2 CHRCHRCH 2 , also decompose by 
forming a metallacyclobutane intermediate which then rear­
ranges selectively to one of two possible olefins. 

We can say from these results that addition of M—H to a 
butenyl C=C bond is fast relative to reductive elimination. 
Interestingly, the final step in this sequence of reactions can 
be viewed simply and consistently as a relatively rapid addition 
of Ta—H across the C = C bond in a cr-allyl ligand. One 
therefore need not postulate that "reductive elimination" of 
the final product from an allyl-hydride complex is rapid and 
at the same time that reductive elimination from a butenyl-
hydride complex is relatively slow. 

What we cannot yet say is that formation of the butenyl-
hydride complex is the slowest step. In fact, that may more 
often be a preequilibrium step. The overall rate therefore also 
would depend on the rate of ring contraction. This would nicely 
explain why some bicyclic species' are so stable; the strained 
metallacyclobutane complex would form less readily. Inter­
estingly, one might then suspect that the required metallacy­
clobutane intermediate from 2 would become more difficult 
to make and that from 3 easier to make as R gets larger; i.e., 
k\ decreases and fc2 increases. This would help explain the 
switchover from tt dimer to ht dimer (Table I). 

These results have two implications. First, it is quite likely 
that all tantalum metallacyclopentane complexes, and at least 
other early transition metal d0 MC4 species that decompose 
to give products of an apparent |S-elimination sequence, de­
compose via metallacyclobutane intermediates. Secondly (but 
more speculatively), the MC4 -» MC 3 ring contraction is a 
straightforward and reasonable way of forming an alkylidene 
ligand from olefins (eq 6, using ethylene as the example) as-

H 

C,H„ 
M — O-O 

M 

M=CHMe + C2H4 

(6) 
X 

M=CH 3 + C1H, 

suming that some MC3 complexes which form in this manner 
will cleave to give metathesis-type products instead of rear­
ranging. One thereby can not only explain how some alkylidene 
ligands are formed in olefin metathesis systems14 which involve 
alkylating agents (since that is precisely how we form com­
plexes of the type Ta(^-C 5Me 5)Cl 2(CH 2=CHMe) 2) , but also 
how they form when no alkylating agent is present (e.g., M = 
Mo(2+), Mo(O), W(4+), etc.). 
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Satellite Structure in the X-ray Photoelectron 
Spectra of Metal Complexes of Alkyl Isocyanides1 

Sir: 

Shake-up satellite structure23 associated with the X-ray 
photoelectron spectra (XPES) of transition metal complexes 
is important because it is frequently related to the energy dif­
ferences between filled and unfilled molecular orbitals. While 
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Figure 1. X-ray photoelectron spectra of [Mo(CNCH3)7](PF6)2: (a) N 
1 s (the Mo 3p3/2 peak is at 395 eV); (b) C 1 s; (c) Mo 3d. Deconvolutions 
were carried out using the procedure described in ref 11. 

such satellites are quite common for salts and complexes of 
many first-row transition metal ions,2,3 they have been rarely 
encountered with the second- and third-row transition metal 
ions.2,3 The major exception to this latter experimental ob­
servation is the shake-up satellites which are observed in the 
X PES of certain carbonyls of the second and third transition 
series.4^6 For example, satellites seen between 5 and 6 eV on 
the O Is, C Is, and metal (Cr 2p, Mo 3d, or W 4f) levels of 
M(CO)6, where M = Cr, Mo or W, are believed to be a con­
sequence of a metal(d) -»• CO(TT*) charge-transfer transition.5 

These observations, and their attendant interpretation, natu­
rally lead to the question of whether those molecules which are 
formally isoelectronic with these carbonyls might exhibit re­
lated satellite structure. 

In view of the isoelectronic relationship between CO and 
CNR, the possibility that shake-up satellites might be found 
in the XPES of transition metal isocyanides makes the latter 
species of considerable spectroscopic interest. However, while 
the XPES of certain isocyanide complexes have been reported, 
for example, Ni(CNBu') 4 , [M(CNCH3)4](PF6)2 , and 
[M2(CNCH3)6](PF6)2, where M = Pd or Pt,7-9 such satellites 
have not previously been detected. We now report the existence 
of satellites in the XPES of the seven-coordinate molybde-
num(II) complexes [Mo(CNR)7](PF6)2 , where R = CH3 , 
C(CH3)3, or CeHi i,10 species which are formally isoelectronic 
with Mo(CO)6 .13 

The N Is spectra of all three complexes are virtually iden­
tical with the primary photoline at 399.9 ± 0.1 eV (fwhm of 
1.5-1.7 eV) and a satellite at 403.6 ± 0.2 eV (Figure 1). The 
observation of a satellite in the N Is XPES of all three com­
plexes,14 the constancy of the intensity ratio / s / / p for the sat­
ellite and primary photoline (0.18 ± 0.04) and the invariance 
of the spectra with differences in the X-ray flux and irradiation 
times makes us confident that we are observing genuine sat­
ellite structure rather than the formation of a high oxidation 
state nitrogen-containing contaminant (such as nitrite). 

If the above interpretation is correct, one might expect to 
find, based on the data for transition metal carbonyls,5,6 a 
satellite in the C Is region of similar magnitude and energy 
separation from the primary photoline. As shown in Figure 1, 
this is in fact the case. For [Mo(CNCH3)7](PF6)2 , the C Is 
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